Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Phys Eng Sci Med ; 47(1): 61-71, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37843766

RESUMO

Many studies have investigated the dielectric properties of human and animal tissues, particularly to differentiate between normal cells and tumors. However, these studies are invasive as tissue samples have to be excised to measure the properties. This study aims to investigate the dielectric properties of urine in relation to bladder cancer, which is safe and non-invasive to patients. 30 healthy subjects and 30 bladder cancer patients were recruited. Their urine samples were subjected to urinalysis and cytology assessment. A vector network analyzer was used to measure the dielectric constant (Ɛ') and loss factor (Ɛ″) at microwave frequencies of between 0.2 and 50 GHz at 25 °C, 30 °C and 37 °C. Significant differences in Ɛ' and Ɛ″ were observed between healthy subjects and patients, especially at frequencies of between 25 and 40 GHz at 25 °C. Bladder cancer patients had significant lower Ɛ' and higher Ɛ″ compared with healthy subjects. The Ɛ' was negatively correlated with urinary exfoliated urothelial cell number, and Ɛ″ was positively correlated. The study achieved a receiver operating characteristic area under curve (ROC-AUC) score of 0.69099 and an optimum accuracy of 75% with a sensitivity of 80% and a specificity of 70%. The number of exfoliated urothelial cell had significant effect on the dielectric properties, especially in bladder cancer patients. Urinary dielectric properties could potentially be used as a tool to detect bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/urina , Curva ROC , Urinálise , Células Epiteliais/patologia , Citodiagnóstico
2.
ACS Omega ; 7(44): 39531-39561, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385900

RESUMO

Sulfonyl hydrazides are viewed as alternatives to sulfinic acids and their salts or sulfonyl halides, which are broadly used in organic synthesis or work as active pharmaceutical substances. Generally, sulfonyl hydrazides are considered good building blocks and show powerful value in a diverse range of reactions to construct C-S bonds or C-C bonds, and even C-N bonds as sulfur, carbon, or nitrogen sources, respectively. As a profound synthetic tool, the electrosynthesis method was recently used to achieve efficient and green applications of sulfonyl hydrazides. Interestingly, many unique and novel electrochemical syntheses using sulfonyl hydrazides as radical precursors have been developed, including cascade reactions, functionalization of heterocycles, as well as a continuous flow method combining with electrochemical synthesis since 2017. Accordingly, it is necessary to specifically summarize the recent developments of electrosynthesis with only sulfonyl hydrazides as radical precursors to more deeply understand and better design novel electrochemical synthesis reactions. Herein, electrosynthesis research using sulfonyl hydrazides as radical precursors since 2017 is reviewed in detail based on the chemical structures of products and reaction mechanisms.

3.
Psychiatry Res ; 309: 114364, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026672

RESUMO

The present study aimed to assess the efficacy of Near-infrared spectroscopy (NIRS) real-time neurofeedback (NF) vs. atomoxetine (AT) in children with attention deficit hyperactivity disorder (ADHD). A parallel-group study was conducted to enroll children with ADHD between 8 and 12 years of age. Participants were assigned into the NIRS group and AT group as their wish. Subjects in the NIRS group received 12 sessions of NF training within 6 weeks, and subjects in the AT group were given oral medication. Changes in Swanson, Nolan, and Pelham-V rating scales (SNAP-IV), and performance of Go/No-Go and N-back working memory tasks at week 3, 6 and 8 were evaluated. Forty-nine patients completed the study, including 18 ADHD in the NIRS group and 31 in the AT group. Total scores of SNAP-IV significantly decreased from baseline to week 3, week 6, and week 8 in both groups. Patients in the NIRS group showed significant lower scores on the inattention subscale of SNAP-IV at week 3 and week 6, compared to the AT group. NIRS group had a shorter reaction time during the Go/No-Go task at week 6 and fewer errors during 2-back than the AT group at week 3. The findings revealed that NIRS real-time NF is more efficacious relative to AT in improving behavioral performance, highlighting its potential role and advantages in treating patients with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Neurorretroalimentação , Cloridrato de Atomoxetina/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Criança , Humanos , Neurorretroalimentação/métodos , Espectroscopia de Luz Próxima ao Infravermelho , Resultado do Tratamento
4.
Front Neuroinform ; 15: 683735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335218

RESUMO

Independent component analysis (ICA) is a multivariate approach that has been widely used in analyzing brain imaging data. In the field of functional near-infrared spectroscopy (fNIRS), its promising effectiveness has been shown in both removing noise and extracting neuronal activity-related sources. The application of ICA remains challenging due to its complexity in usage, and an easy-to-use toolbox dedicated to ICA processing is still lacking in the fNIRS community. In this study, we propose NIRS-ICA, an open-source MATLAB toolbox to ease the difficulty of ICA application for fNIRS studies. NIRS-ICA incorporates commonly used ICA algorithms for source separation, user-friendly GUI, and quantitative evaluation metrics assisting source selection, which facilitate both removing noise and extracting neuronal activity-related sources. The options used in the processing can also be reported easily, which promotes using ICA in a more reproducible way. The proposed toolbox is validated and demonstrated based on both simulative and real fNIRS datasets. We expect the release of the toolbox will extent the application for ICA in the fNIRS community.

5.
Brain Imaging Behav ; 15(3): 1667-1675, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32761565

RESUMO

Human cooperation behavior based on reciprocal altruism has been a hallmark of ancient and modern societies. Prior studies have indicated that inter-brain synchronization (IBS) between partners could exist during cooperation. However, how the sex composition of dyads influences the neural synchronization is still poorly understood. Here, we adopted functional near-infrared spectroscopy (fNIRS) based hyperscanning and a task of building blocks to investigate the sex composition effect on IBS in face-to-face cooperation in a natural situation, by evaluating brain-to-brain interactions of forty-five same-sex and mixed-sex dyads. Results showed significantly stronger inter-brain synchronization in Brodmann area 10 (BA10) in cooperation. In addition, variance analysis indicated that only male-male dyads showed increased inter-brain synchronization in left inferior frontal region (i.e., BA10) specific to cooperation. More importantly, the inter-brain synchronization in male-male dyads was significantly greater than that in male-female and female-female dyads. These findings provide support for the impact of sex composition on social cooperation in a naturalistic interactive setting and extend our knowledge on the neural basis of face-to-face cooperation.


Assuntos
Mapeamento Encefálico , Relações Interpessoais , Encéfalo , Comportamento Cooperativo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
6.
Hum Brain Mapp ; 42(6): 1657-1669, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33332685

RESUMO

The quality of optode arrangement is crucial for group imaging studies when using functional near-infrared spectroscopy (fNIRS). Previous studies have demonstrated the promising effectiveness of using transcranial brain atlases (TBAs), in a manual and intuition-based way, to guide optode arrangement when individual structural MRI data are unavailable. However, the theoretical basis of using TBA to optimize optode arrangement remains unclear, which leads to manual and subjective application. In this study, we first describe the theoretical basis of TBA-based optimization of optode arrangement using a mathematical framework. Second, based on the theoretical basis, an algorithm is proposed for automatically arranging optodes on a virtual scalp. The resultant montage is placed onto the head of each participant guided by a low-cost and portable navigation system. We compared our method with the widely used 10/20-system-assisted optode arrangement procedure, using finger-tapping and working memory tasks as examples of both low- and high-level cognitive systems. Performance, including optode montage designs, locations on each participant's scalp, brain activation, as well as ground truth indices derived from individual MRI data were evaluated. The results give convergent support for our method's ability to provide more accurate, consistent and efficient optode arrangements for fNIRS group imaging than the 10/20 method.


Assuntos
Algoritmos , Atlas como Assunto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem Funcional/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Neuroimagem Funcional/normas , Humanos , Modelos Teóricos , Espectroscopia de Luz Próxima ao Infravermelho/normas
7.
J Cancer ; 10(17): 4038-4044, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417648

RESUMO

Background and purpose: Bladder cancer is the most common malignant tumour in the urinary system, with a high incidence and recurrence rate. While the incidence of bladder cancer has been rising in recent years, the prevalence of bladder carcinoma is showing an increasing tendency in the younger age group. There are several methods to detect bladder cancer, but different methods have varying degrees of accuracy which intrinsically depends on the method's sensitivity and specificity. Our aim was to comprehensively summarize the current detection methods for bladder cancer based on the available literature, and at the same time, to find the best combination of different effective methods which can produce a high degree of accuracy in detecting the presence of cancerous cells in the bladder. Materials and Methods: We used key word retrieval method for searching related references in English that had been indexed in PubMed and Medline. Results and Discussion: This paper discussed the different detection methods and their sensitivities/specificities as well as the advantages and disadvantages. We summarized the best identified cancer cell detection methods with higher sensitivity/specificity. Conclusion: The results of this review can positively help to identify accurate methods for detecting bladder cancer and highlight areas to be further improved for future research work.

9.
Front Hum Neurosci ; 12: 86, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556185

RESUMO

The mirror neuron system (MNS), mainly including the premotor cortex (PMC), inferior frontal gyrus (IFG), superior parietal lobule (SPL), and rostral inferior parietal lobule (IPL), has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS) has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS.

10.
J Neural Eng ; 14(4): 046014, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28573984

RESUMO

OBJECTIVE: Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). APPROACH: GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. MAIN RESULTS: Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus <54% in two-choice classification accuracy. SIGNIFICANCE: We believe GMMAC will be useful for clinical fNIRS-based brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.


Assuntos
Interfaces Cérebro-Computador , Simulação por Computador , Modelos Neurológicos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Humanos , Distribuição Normal
11.
J Biomed Opt ; 22(2): 27004, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28301653

RESUMO

Two-person neuroscience, a perspective in understanding human social cognition and interaction, involves designing immersive social interaction experiments as well as simultaneously recording brain activity of two or more subjects, a process termed "hyperscanning." Using newly developed imaging techniques, the interbrain connectivity or hyperlink of various types of social interaction has been revealed. Functional near-infrared spectroscopy (fNIRS)-hyperscanning provides a more naturalistic environment for experimental paradigms of social interaction and has recently drawn much attention. However, most fNIRS-hyperscanning studies have computed hyperlinks using sensor data directly while ignoring the fact that the sensor-level signals contain confounding noises, which may lead to a loss of sensitivity and specificity in hyperlink analysis. In this study, on the basis of independent component analysis (ICA), a source-level analysis framework is proposed to investigate the hyperlinks in a fNIRS two-person neuroscience study. The performance of five widely used ICA algorithms in extracting sources of interaction was compared in simulative datasets, and increased sensitivity and specificity of hyperlink analysis by our proposed method were demonstrated in both simulative and real two-person experiments.


Assuntos
Relações Interpessoais , Neurociências/instrumentação , Neurociências/métodos , Espectroscopia de Luz Próxima ao Infravermelho , Algoritmos , Mapeamento Encefálico , Humanos
12.
Front Neurosci ; 11: 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28190997

RESUMO

The International 10/20 system is an important head-surface-based positioning system for transcranial brain mapping techniques, e.g., fNIRS and TMS. As guidance for probe placement, the 10/20 system permits both proper ROI coverage and spatial consistency among multiple subjects and experiments in a MRI-free context. However, the traditional manual approach to the identification of 10/20 landmarks faces problems in reliability and time cost. In this study, we propose a semi-automatic method to address these problems. First, a novel head surface reconstruction algorithm reconstructs head geometry from a set of points uniformly and sparsely sampled on the subject's head. Second, virtual 10/20 landmarks are determined on the reconstructed head surface in computational space. Finally, a visually-guided real-time navigation system guides the experimenter to each of the identified 10/20 landmarks on the physical head of the subject. Compared with the traditional manual approach, our proposed method provides a significant improvement both in reliability and time cost and thus could contribute to improving both the effectiveness and efficiency of 10/20-guided MRI-free probe placement.

13.
Front Neurosci ; 9: 267, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26283906

RESUMO

Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called "Cluster Imaging of Multi-brain Networks" (CIMBN). CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS) systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN) modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network's properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology.

14.
Biomed Opt Express ; 6(8): 2786-802, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26309744

RESUMO

Linear regression with short source-detector separation channels (S-channels) as references is an efficient way to overcome significant physiological interference from the superficial layer for functional near-infrared spectroscopy (fNIRS). However, the co-located configuration of S-channels and long source-detector separation channels (L-channels) is difficult to achieve in practice. In this study, we recorded superficial interference with S-channels in multiple scalp regions. We found that superficial interference has overall frequency-specific and globally symmetrical patterns. The performance of linear regression is also dependent on these patterns, indicating the possibility of simplifying the S-channel configurations for multiregional fNIRS imaging.

15.
PLoS One ; 8(5): e64590, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691253

RESUMO

The present study described a new type of multi-person neurofeedback with the neural synchronization between two participants as the direct regulating target, termed as "cross-brain neurofeedback." As a first step to implement this concept, an experimental platform was built on the basis of functional near-infrared spectroscopy, and was validated with a two-person neurofeedback experiment. This novel concept as well as the experimental platform established a framework for investigation of the relationship between multiple participants' cross-brain neural synchronization and their social behaviors, which could provide new insight into the neural substrate of human social interactions.


Assuntos
Modelos Biológicos , Neurorretroalimentação/instrumentação , Neurorretroalimentação/métodos , Comportamento Social , Adulto , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho
16.
PLoS One ; 7(12): e51617, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251595

RESUMO

Spontaneous brain activity or off-line activity after memory encoding is associated with memory consolidation. A few recent resting-state functional magnetic resonance imaging (RS-fMRI) studies indicate that the RS-fMRI could map off-line memory consolidation effects. However, the gene effects on memory consolidation process remain largely unknown. Here we collected two RS-fMRI sessions, one before and another after an episodic memory encoding task, from two groups of healthy young adults, one with apolipoprotein E (APOE) ε2/ε3 and the other with APOE ε3/ε4. The ratio of regional homogeneity (ReHo), a measure of local synchronization of spontaneous RS-fMRI signal, of the two sessions was used as an index of memory-consolidation. APOE ε3/ε4 group showed greater ReHo ratio within the medial temporal lobe (MTL). The ReHo ratio in MTL was significantly correlated with the recognition memory performance in the APOE ε3/ε4 group but not in ε2/ε3 group. Additionally, APOE ε3/ε4 group showed lower ReHo ratio in the occipital and parietal picture-encoding areas. Our results indicate that APOE ε3/ε4 group may have a different off-line memory consolidation process compared to ε2/ε3 group. These results may help generate future hypotheses that the off-line memory consolidation might be impaired in Alzheimer's disease.


Assuntos
Apolipoproteínas E/genética , Memória/fisiologia , Comportamento/fisiologia , Mapeamento Encefálico , Análise por Conglomerados , Demografia , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Neocórtex/fisiologia , Descanso/fisiologia , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Adulto Jovem
17.
Neuroimage ; 60(4): 2008-18, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22366082

RESUMO

The feasibility of functional near-infrared spectroscopy (fNIRS) to assess resting-state functional connectivity (RSFC) has already been demonstrated. However the validity of fNIRS-based RSFC has rarely been studied. In the present study, fNIRS and fMRI data were simultaneously acquired from 21 subjects during the resting state. After the spatial correspondence was established between the two imaging modalities by transforming the fMRI data into fNIRS measurements space, the index of Between-Modality-Similarity (BMS) of RSFC was evaluated across multiple spatial scales. First, the RSFC between the bilateral primary motor ROI was quite similar between fNIRS and fMRI for all the subjects (BMS(ROI) = 0.95 ± 0.04 for HbO and BMS(ROI) = 0.86 ± 0.13 for HbR). Second, group-level sensorimotor RSFC maps (0.79 for HbO and 0.74 for HbR) showed higher between-modality similarity than individual-level RSFC maps (0.48 ± 0.16 for HbO and 0.41 ± 0.15 for HbR). Finally, for the first time, we combined fNIRS and graph theory to investigate topological properties of resting-state brain networks. The clustering coefficient (C(p)) and characteristic path length (L(p)) which are the most important network topological parameters, both showed high between-modality similarities (BMS(Cp) = 0.90 ± 0.03 for HbO and 0.90 ± 0.06 for HbR; BMS(Lp) = 0.92 ± 0.04 for HbO and 0.91 ± 0.05 for HbR). In summary, the converged results across all the spatial scales demonstrated that fNIRS is capable of providing comparable RSFC measures to fMRI, and thus provide direct evidence for the validity of the optical brain connectivity and the optical brain network approaches to functional brain integration during resting state.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Descanso/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Processamento de Sinais Assistido por Computador , Adulto Jovem
18.
PLoS One ; 7(12): e51584, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284719

RESUMO

Accumulating evidence has revealed that the resting-state functional connectivity (RSFC) is frequency specific and functional system dependent. Determination of dominant frequency of RSFC (RSFC(df)) within a functional system, therefore, is of importance for further understanding the brain interaction and accurately assessing the RSFC within the system. Given the unique advantages over other imaging techniques, functional near-infrared spectroscopy (fNIRS) holds distinct merits for RSFC(df) determination. However, an obstacle that hinders fNIRS from potential RSFC(df) investigation is the interference of various global noises in fNIRS data which could bring spurious connectivity at the frequencies unrelated to spontaneous neural activity. In this study, we first quantitatively evaluated the interferences of multiple systemic physiological noises and the motion artifact by using simulated data. We then proposed a functional system dependent and frequency specific analysis method to solve the problem by introducing anatomical priori information on the functional system of interest. Both the simulated and real resting-state fNIRS experiments showed that the proposed method outperforms the traditional one by effectively eliminating the negative effects of the global noises and significantly improving the accuracy of the RSFC(df) estimation. The present study thus provides an effective approach to RSFC(df) determination for its further potential applications in basic and clinical neurosciences.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Vias Neurais/fisiologia , Descanso/fisiologia , Processamento de Sinais Assistido por Computador , Espectroscopia de Luz Próxima ao Infravermelho , Simulação por Computador , Humanos
19.
PLoS One ; 6(9): e25031, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949842

RESUMO

Resting-state fMRI (RS-fMRI) has been drawing more and more attention in recent years. However, a publicly available, systematically integrated and easy-to-use tool for RS-fMRI data processing is still lacking. We developed a toolkit for the analysis of RS-fMRI data, namely the RESting-state fMRI data analysis Toolkit (REST). REST was developed in MATLAB with graphical user interface (GUI). After data preprocessing with SPM or AFNI, a few analytic methods can be performed in REST, including functional connectivity analysis based on linear correlation, regional homogeneity, amplitude of low frequency fluctuation (ALFF), and fractional ALFF. A few additional functions were implemented in REST, including a DICOM sorter, linear trend removal, bandpass filtering, time course extraction, regression of covariates, image calculator, statistical analysis, and slice viewer (for result visualization, multiple comparison correction, etc.). REST is an open-source package and is freely available at http://www.restfmri.net.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiopatologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Diagnóstico por Imagem , Humanos , Magnetismo , Rede Nervosa , Software
20.
J Biomed Opt ; 16(6): 067008, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721829

RESUMO

Recently, resting-state functional near-infrared spectroscopy (rs-fNIRS) research has experienced tremendous progress. Resting-state functional connectivity (RSFC) has been adopted as a pivotal biomarker in rs-fNIRS studies. However, it is yet to be clear if the RSFC derived from rs-fNIRS is reliable. This concern impedes extensive utilization of rs-fNIRS. We systematically address the issue of reliability. Sixteen subjects participate in two rs-fNIRS sessions held one week apart. RSFC in sensorimotor system is calculated using the seed-correlation approach. Then, test-retest reliability is evaluated at three different scales (map-, cluster-, and channelwise) for individual- and group-level RSFC derived from different types of fNIRS signals [oxygenated (HbO), deoxygenated (HbR), and total hemoglobin (HbT)]. The results show that, for HbO signals, individual-level RSFC generally has good-to-excellent map-/clusterwise reliability, while group-level RSFC has excellent reliability. For HbT signals, the results are similar. For HbR signals, the clusterwise reliability is comparable to that for HbO while the mapwise reliability is slightly lower (fair to good). Focusing on RSFC at a single channel, we report poor channelwise reliability for all three types of signals. We hereby propose that fNIRS-derived RSFC is a reliable biomarker if interpreted in map- and clusterwise manners. However, channelwise interpretation of individual RSFC should proceed with caution.


Assuntos
Processamento de Sinais Assistido por Computador , Espectroscopia de Luz Próxima ao Infravermelho/normas , Análise por Conglomerados , Feminino , Hemoglobinas/análise , Hemoglobinas/química , Humanos , Imageamento por Ressonância Magnética , Masculino , Oxiemoglobinas/análise , Oxiemoglobinas/química , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...